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Quasi-linear systems with many degrees of freedom are investigated for low dissipation and periodic perturbation using Lyapunov's 
second method. The periodic perturbation can be of small or large amplitude. Criteria of the asymptotic stability of the systems 
investigated are derived, which can be characterized as the sufficient conditions for parametric imperturbability of the latter when 
there is a weak dissipative background. The proposed approach enables limiting cases of periodic perturbation to be considered, 
when the corresponding frequency may approach both zero and infinity. Extensions to the case of non-periodic perturbations 
which vary very slowly or very rapidly with time are possible. © 2005 Elsevier Ltd. All rights reserved. 

It  is well known [1, 2], that  in the case of  per iodic  per turba t ion ,  low dissipation does  not  e m e r g e  as a 
barr ier ,  oppos ing  pa rame t r i c  build-up.  Hence ,  it is of  interest  to establish the dissipation threshold,  on 
reaching which pa rame t r i c  resonance  does  not  imply instability of  the equil ibrium. Such a threshold  
can be establ ished using Lyapunov ' s  function. In part icular ,  in the deve lopmen t  of  a previous  
investigation [3] it was possible to obta in  a re la t ion be tween  the ampl i tudes  of  small dissipative and 
small per turb ing  per iodic  forces, guaran tee ing  asymptot ic  stability of  equil ibrium. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider  a n o n - a u t o n o m o u s  system with n degrees  of  f r e e d o m  

d aL OL 
dt~¢ t ~q - - txD(tot,  q ) q  (1.1) 

the Lagrang ian  of  which is given by the expression 

1 .T  
L(tot, q, ¢I) = L2(tot, q, (1) + Lo(o)t, q) = ~q A(tOt, q ) q  + Lo(tOt , q) (1.2) 

xR .) L(o~t, q, q) ~ Ctqt] (K X Dq 

where  L(0~t, q,/1) depends  (2~/c0)-periodically on t (co > 0). Moreover ,  we will assume tha t  

A = A o+A*(o3 t , q ) ,  A r = A, A*(tot,  O) = 0 

Lo(tOt, q) = lq rB( t .0 t )q  + L0(0~t, q) ,  L0(tot, q) = o(llqll 2) 
(1.3) 

B(o)t) = B0+l]Bl ( tOt  ), B r = B 

T 
D(cot, q)  = D o + D * ( t o t , q ) ,  D*(tOt, O) = O, D O = D O 

tPrikl. Mat. Mekh. Vol. 69, No. 4, pp. 612-623, 2005. 
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Here A0, B0 and D O are constant symmetrical matrices with positive eigenvalues and A* (cot, q), Bl(mt), 
D * ( ~ ,  q) are n × n matrices, (2n/o)-periodic in t. The small parameters ~ > 0 and 13 > 0 represent the 
degree of dissipation and parametric perturbation respectively. 

Bearing expressions (1.3) in mind, we can rewrite Eqs (1.1) in the form 

Aoq + ~D0¢ j + B(o t )q  = F(o~t, q, q),  IlF(00t, q, q)l[ = o(ll(q, q)ll) (1.4) 

As can be seen, the point q = ~ = 0 corresponds to an equilibrium position of this system. Henceforth, 
we will always mean by the word "equilibrium" this particular trivial solution of the system considered. 

Together with (1.4) we will consider the truncated system 

A0q + B0q = 0 (1.5) 

which is obtain from system (1.4) when a = 13 = 0 and the non-linear terms are dropped. Suppose 
mi > 0 (i = 1, 2, . . . ,  n) are the natural frequencies of system (1.5). As is well known [4] (see also [2]), 
satisfaction of the relation 

co = (ooi+oj) /k ,  i , j  = 1,2 . . . . .  n, k = 1,2 . . . .  (1.6) 

which connects the frequency o of the periodic perturbation and the natural frequencies co/of the 
truncated system (1.5) and so-called simple resonance, when i = j, and combination resonance in the 
opposite case, may imply instability of the equilibrium of parametrically perturbed systems. 

Later it will important to clarify for which dissipation conditions the occurrence of instability of system 
(1.4), which arises as a consequence of resonance, can be prevented. 

Henceforth it will be natural to assume that the parameter [3 is so small that the eigenvalues bi(t) of 
the matrix B(ot)  = B0 + ~Bl(ot) are positive, when bi(t ) > bi, 0 < D i -~ const. 

2. T H E  T H E O R E M  OF A S Y M P T O T I C  S T A B I L I T Y  

Consider the equations 

ID0-)~Ao[ = O, [aB~/~(cot)- ~B(C0t)[ = 0 (2.1) 

which correspond to the characteristic equations of corresponding pencils of quadratic forms [5]. The 
roots of Eqs (2.1) are the characteristic numbers of these pencils. Since the matrices A0 and B ( ~ )  are 
positive-definite, each of Eqs (2.1) has n real roots )~i (i = 1, . . . ,  n). 

Suppose further that )~+ and ~- are the greatest and least characteristic numbers of  the first equation 
of (2.1), while the numbers g+ and Ix- correspond to sup(gl(t), . . . ,  gn(t)) and inf(gl(t) . . . . .  gn(t)), where 
gi(t) are the characteristic numbers of the second equation of (2.1). 

Theorem 1. If the inequality 

a)C > [~g+c0/2 (2.2) 

is satisfied, the equilibrium positive q = ~ = 0 of system (1.4) is a asymptotically stable. 

Proof. Representing system (1.4) in the form 

¢i = Aolp,  1~ = -¢XDoq-  B(cot)q + F*(o)t,  q, p) (2.3) 

we consider the function 

1 T , - I  V = ~p ,'t o p + ~qrB(o)t)q + yqp + - ~ q r D o q  (2.4) 
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where 7 is a positive constant, the choice of which is made below. The derivative of the function Vwith 
respect to t along the vector field, defined by system (2.3), can be conveniently written in the form 

dt + f TriO) ~nl "~ _ TqT B(cot)q) + o(ll(q, dV = _[(IT(O~Do)(I_7(ITAoq] I q [. 2 a~_~j) q q)ll 2) 

It can be seen that the right-hand side of this equation contains two regular pencils of quadratic forms, 
connecting the generalized velocities and generalized coordinates respectively. Now consider the 
characteristic equations of these pencils. 

ItxD0- TA d = 0, p_to OB1 _ 7B(tot  ) = 0 
2 a(0)t) 

Assuming 7 = ct)~ in the first equation and 7 = )~[~m/2 in the second, we arrive at Eqs (2.1). 
Starting from the extremal properties of the characteristic numbers of a regular pencil of quadratic 

forms [5], we obtain the inequalities 

. T  , 

X-< q Doq<~, +, 

~lr Ao (] 

on the basis of which we have 

X-clrAoq . r . < q Doq, 

r ~B~ 
- < q  ~--('~q< + 

- ~ - B  

r OB~ q 3 - ~ q  < ix+qrB((ot)q 

Moreover, from the condition for dV/dt to be negative-definite, we obtain the inequalities 

. r  . . r  . [ l o ~  r O B 1  _ 
7q A0q < ctq O0q, Vll~ill * 0; -~--q O - - ~ q  < 7qrB(tot)q, Vllqll * o 

Thus, taking inequality (2.2) into account and choosing the constant 7 in accordance with the condition 

~11 a+to/2 < 7 < txX- (2.5) 

we arrive at the fact that the derivative dV/dt becomes negative-definite. 
In order to prove the asymptotic stability of the equilibrium, we will show that the function Vis positive- 

definite. 
Consider the auxiliary system (the comparison system) 

Aoit + aDo~ I + b-Eq = 0 (2.6) 

where b- = min(/~l . . . .  ,/~n) and E is the identity matrix. Representing Eqs (2.6) in the form 

¢] = Aolp, p = - ~ D o q - b - E q  (2.7) 

we consider the function 

1 T . q  1 , -  T_ + V* = ~p .4 o p + ~ o  q t~q+yqp -~qrDoq (2.8) 

By virtue of the system of equations (2.7) we have for its derivative 

dV* _ _atqrDoq + 7qrAoq _ 7b-qrEq 
dt 

and, therefore, when the second part of inequality (2.5) is satisfied, namely, 7 < ~)~-, the derivative dV*Mt 
is negative-definite. 
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In system (2.6) the dissipation is complete. Consequently, where the second part of inequality (2.5) 
is satisfied the function V* cannot be sign-variable, since this would contradict the asymptotic stability 
of the equilibrium of system (2.6). It is also cannot be degenerate, since this would contradict the fact 
dV*/dt is sign-definite. Consequently, the function V* is positive-definite. 

Comparing the expressions for Vand V*, defined by Eqs (2.4) and (2.8) respectively, and bearing in 
mind the inequality 

qrB(mt)q > b-qrEq 

we conclude that the function Vis positive-definite. Hence, the equilibrium position of system (1.4) is 
asymptotically stable. 

Remark 1. The proposed approach may turn out to be effective not only in the case of a periodic perturbation, 
but for any other oscillatory perturbation, which varies slowly with time, in particular, for systems of the form 

A01 ~ + a D 0 c  ] + [B  o + ~Bl (e t ) ]  q = F(e t ,  q, ¢1) 

where e is a small parameter. 

Corollary 1. The equilibrium position of system (1.4) is asymptotically stable if one of the following 
conditions is satisfied: 

(1) all the eigenvalues of the matrix 

czD o - (l~!tt+m/2)Ao (2.9) 

are positive; 
(2) the lower bound of the eigenvalues of the matrix 

ct)~-B( cot ) - (~col2 )3Bzla( tot) (2.10) 

is a positive number. 

Proof. The correctness of the corollary follows from the fact that the limitations imposed on the 
eigenvalues of one of the matrices (2.9) and (2.10) exclude the satisfaction of the equation cz)~- = [3~t+m/2. 
The latter, if we take into account the procedure used when proving Theorem 1, only ensures that the 
eigenvalues of the above matrices are negative. Hence, when the conditions of the corollary are satisfied, 
inequality (2.2) is preserved and the condition of Theorem 1 is thereby satisfied. 

Corollary 2. For small fixed parameters a and D, a threshold value of the frequency of the periodic 
perturbation 

co 0 = f2, f~ = 2 ° tU (2.11) 

exist such that when co < m0 the equilibrium position of system (1.4) is asymptotically stable. 

Proof. The equation m 0 = f2 can be interpreted as the limiting relation for inequality (2.2). On the 
other hand, on the basis of the latter we have 

m < f~ (2.12) 

Since inequality (2.12) ensures that dV/dt is sign-definite, then according to relations (2.12) and (2.11) 
we can conclude that when m < m0 the equilibrium position considered is asymptotically stable. 

Corollary 3. For small fixed parameters o~ and 13, the oscillations of a system with critical frequencies 
(1.6) and large values o f k  are quenched by dissipative forces. In particular, the limiting value k0 of the 
number k, beginning from which the critical frequency (1.6) does not imply parametric build-up, is given 
by the inequality 

k 0 - ((l)i -t-- o)j)/~"~ > 0 ;  o) i - (.l)j > 0 
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Proof. Assuming 

co = (o~i+o~j)lk, i , j  = 1,2 . . . . .  n, k = 1,2 . . . .  

in inequality (2.2), where co/- coj > 0, since co > 0 according to the initial propositions, we obtain the 
following lower limit for k 

k > (o~ i + coj)/f~ (2.13) 

Now evaluating the integer part of the right-hand side of inequality (2.13) and adding unity, we determine 
k0. 

Example 1. We will apply Theorem i to the problem of the oscillations of a pendulum in a periodically 
varying gravity field and a resisting medium [6, p. 28]. The equation of motion, apart from the notation, 
in these case has the form 

~t' + IX./+ ,12( 1 + ~cos00t)x = o(ll(x, Je)ll) (2.14) 

where ~, [3 and 7 are positive constants, where, as previously, we will assume that ~ and [3 are small 
quantities. By Theorem 1, the condition for asymptotic stability of the trivial solutionx = 2 = 0 has the 
form 

sincot 7 
> ~ m a x I  1 + [3coso~tJ (2.15) 

Noting that the expression in square brackets on the right-hand side of inequality (2.15) takes an 
extremal value when 13 + cos cot = 0, we arrive at the condition for asymptotic stability 

13O~max+~/1- 132 co 13 

which is identical with the condition obtained previously by Starzhinskii [7]. 

Remark 2. As can be seen from Eq. (2.14) and the form of the coefficients occurring in it, the dimensions of 
the latter are not identical. This, however, has no effect on the correctness of the final result. Nevertheless, in more 
complex cases, to avoid misunderstandings, it is preferable to change to the dimensionless time x = )~t, where 
)~ = lc -1 is the dimensional unity. As a result, all the coefficients become dimensionless while at the same time 
preserving their absolute value. 

3. T H E  A S Y M P T O T I C  S T A B I L I T Y  OF T H E  E Q U I L I B R I U M  F O R  
H I G H - F R E Q U E N C Y  P E R T U R B A T I O N  

We will now consider a periodic perturbation with a high frequency co, including the limiting case when 
co ~ ~ .  As will be shown below, when ,co ~ ~ the asymptotic stability of the equilibrium can be established 
for less restrictive assumptions regarding the periodic perturbation, in particular, its smallness. The latter 
fact enables us to consider the more general equations 

Aoq + ~D0q + B(c0t)q = F(c0t, q, q) (3.1) 

where 

0 O, I, llF(cot, q, q)ll = o([l(q, q)ll) B(olt) ~ Ct, F(0lt, q, I~) tE Ctq q I(R X Dqq), 

while the constant matrices A0 and Do, as before, are symmetrical with positive eigenvalues, and ~ is 
a small positive parameter. 
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We will further put 

B 0 = <B)= lIB(cot)dt,  T = 2__~c0 

B(cot) = B°+ B - B  ° = B°+ Bl(cot), (Bl(cot)) = 0 

As can be seen, in this section, unlike the first two, the structure of the matrix B(ot)  is such that the 
periodic perturbation Bl(cot ) is not multiplied by a small parameter. Suppose B~(cot) is the original matrix 
B l ( ~ )  such that (B~(cot)) = 0. Since the original matrix B~(cot) contains the quantity 1/co as a factor, 
it is convenient henceforth to represent it in the form B~(cot) = [~a(~)/co, where Bl(~t),  as before, 
is a matrix with zero mean. 

Theorem 2. A threshold value of the frequency co = coo exists such that when co > coo the equilibrium 
position q = t] = 0 of system (3.1) is asymptotically stable, if the following conditions are satisfied: 

(1) the matrices A0, Do, B ° = (B) are symmetrical and positive-definite, where the elements of the 
matrixA0 are independent of co, while the lower bounds of the eigenvalues of the matrices Do and B ° 
satisfy the following inequalities respectively 

d00>d*, b ° - > b * ,  Vco~ [co*,oo[ (0<co*=cons t )  (3.2) 

where d* and b* are positive constants; 
(2) limB~ = 0, limB*ITA~IDo = O, limB*~TA~IB = 0 when co --+ ~ .  

Proof. We will represent Eqs (3.1) in the form 

q = Aolp, 0 = -°LDo(i-B(cot)q+F*(cot, q,P) (3.3) 

Consider the function 

1 T ~ T ~ T  - 1  
V = Vo+~{Tq Blq+q BIAo p} (3.4) 

where 

= 1  r . - I  Vo 2P Ao P + ~qrBOq + TqP + ~_TqrDo q (3.5) 

while the positive constant 7 satisfies the inequality C~/o > 7a~, in which a~ is the greatest eigenvalue 
of the matrixA0. The derivative of the function Vwith respect to t along the vector field, defined by 
system (3.3), has the form 

dV dV 0 1 r - r  . r r . r .  r r . r _ - l~  . 
d"7 = d"'7- + ~{q [T(BI + BI) - aBrAoIDo]q + q t~1 q - q t~1 :% t~q~ + o(ll(q, ci)ll 2) (3.6) 

where 

dV o 
dt 

- a(lrDoCl + TtlrA0q - TqrB°q (3.7) 

As can be seen from expressions (3.6) and (3.7), at a sufficiently high frequency of the periodic 
perturbation co and when conditions 1 and 2 of the theorem are satisfied, the derivative dV/dt is negative- 
definite, when the possibility of choosing the constant 7 (which is independent of co) is taken into account. 
The function Vfor sufficiently high co, according to Eq. (3.4), is defined by expression (3.5) and is positive- 
definite. In order to show this, it is sufficient, following the proof of Theorem 1, to consider the compari- 
son system 

Ao( ~ + aDoi ~ + B°q = 0 
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Consequently, there is a complete basis for concluding that the equilibrium position in question is 
asymptotically stable when the conditions of the theorem are satisfied. 

Remark 3. In the special case when the elements of the matrices B ° and D o are independent of m, we can drop 
the second part of condition 1, connected with inequalities (3.2). 

Example 2. We will illustrate Theorem 2 on a system with one degree of freedom: 

J/+ ado. /+ (b 0 + y0l~cos0lt)x = o(ll(x, ~e)ll) 

where o~, do, b0 y, 8 are positive constants, and, as previously, a is a small parameter. 
The satisfaction of condition 1 of Theorem 2 for the system considered is obvious, and condition 2 

takes the form 

limo~6-1[ysintot] = 0, lim~0~-l[d0Ysinmt] = 0 

limo~ ~- l[ysinmt](b0 + yc0~coscot) = 0 when m---) ~, 

Therefore, for a sufficiently large value of m the equilibrium x = 2 = 0 is asymptotically stable if 
2 8 < 1 .  

It follows from this example that, in the framework of Theorem 2, the form of the dependence of 
the matricesA0, Do and B(mt) on the parameter m is important. As will be shown below (Example 5), 
this fact is due not only to the construction of the function V but also to the properties of the 
parametrically perturbed systems themselves. In this connection it is convenient to distinguish a class 
of systems for which conditions 1 and 2 of the theorem are always satisfied. 

Definition. We will say that a periodic function (a vector function or a matrix function) ~(c0t) e C~t 
only contains a parameter m under the argument sign, if the parameter m only occurs as a factor for t. 

Functions of this class will be distinguished by a hat. In fact, if a periodic function belongs to this 
class: ~ ( ~ )  = q~(mt), this means that its Fourier coefficients are independent of m. In the light of this 
definition, the following corollary of Theorem 2 holds. 

Corollary. Suppose the matrices A0, Do, B ° = (B) are symmetrical and positive-definite, where the 
elements of the matricesA0 and Do are independent of m, and B ( ~ )  = B ( ~ ) .  Then, a threshold value 
of the frequency m = m 0 exists, such that when m > m 0 the equilibrium position of system (3.1) is 
asymptotically stable. 

Example 3. When considering Bolotin's problem of the dynamic stability of the plane form of the 
bending of an elastic beam [8], it was shown in [2] that a finite-dimensional linear model of the problem, 
which reduces to a system of the form 

Aoq + C~Doq + [B o + [~q)(cot)B*]q = 0 (3.8) 

may turn out to be useful. Here A0, Do and B0 are constant positive-definite diagonal matrices, not 
containing the parameter m, ~p(~) is a scalar periodic function, B~ is an asymmetrical constant matrix, 
also independent of m, and [3 is a numerical parameter. 

According to the corollary derived above, the equilibrium position of system (3.8) for a fairly large 
value of co is asymptotically stable, irrespective of the value of the numerical parameter [~, if the following 
conditions are satisfied 

(1) ~p(mt) = q3(mt), (2) (~p(mt)) = O. 

4. E X T E N S I O N  TO T H E  CASE OF V A R I A B L E  D I S S I P A T I O N  

The proposed approach enables us to consider the move general equations 

aoit  + o~D(cot)(l + B(cot)q = F(o~t, q, c]) (4.1) 

where, unlike Eqs (3.1), the matrix of the dissipative forces D(mt) is variable, while the matricesAo and 
B(cot) are the same as in Section 3. 
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Further, while retaining the notation used in Section 3, we will additionally put 

9 0 _-- 

T 

(D)  = l ID(Cot)d t ,  T = 2re 

0 

D = D ° + D - D  O = D ° + D l ( ~ t  ), (Dl(COt)) = 0 

Suppose D~ (cot) is the primitive of the matrix D l(O~t), where (D~ (cot)) = 0, and, in the same way as above, 
the representation D*l(o~t) = DI(ON)/o),  (/~l(OY)) = 0 holds. 

Theorem 3. Suppose the matrices D o = (D(cot)) and B ° = (B(o~t)) are symmetrical and, moreover, 
all the eigenvalues of the matrix D o are positive, while the elements of the matricesA0, D ( ~ )  and B ( ~ )  
respectively satisfy the limits 

- -  + + + 

aoi j <_ aoq <_ aoq, dq <- d o < d O, bq <- bq < bq, Vo~ ~ [co*, ~,[, 0 < ¢0" = const (4.2) 

where the constants a~ij, + d~, + aoij, d ij, b~, b~j are independent of co. 
Then a threshold value of the frequency co = co 0 exists such that when co > COo the equilibrium position 

q = ~ = 0 of system (4.1) is asymptotically stable, if all the eigenvalues of the matrix B ° = (B(cot)) are 
positive, and, conversely, unstable if they are all negative. 

Proof. Representing Eqs (4.1) in the form 

(1 = AolP, P = - a D ( ¢ o t ) A o l P -  B(o)t)q + F*(cot, q, p) (4.3) 

we consider the function 

1 T ~ V = V* + ~{Tq B,q + q r (~ r  + cc~/bl)Ao, p + ¢xprAolblAo,P} (4.4) 

The function V* is defined by the right-hand side of (3.5) with D o replaced byD ° in it, while the constant 
0- :1- 0 0 + y satisfies the inequality Rd - > ya 0, d - is the least eigenvalue of the matrix D and a 0 is the greatest 

eigenvalue of the matrixA 0. 
The derivative of the function Vwith respect to t along the vector field, defined by system (4.3), has 

the form 

d V  _ dV*  1 .r - r 
dt d---'t" + ~ { q  [T(BI + BI) -O~(L) f  + I ) I )A° IB]q-o~qT(BT+o~T[) I )A° ID( I+ 

+ ¢]r[~" + a ] ' b l  - aZ(D r + bl)Ao~D]c] - q r (~ r  + a3"bl )Ao~Bq } + o(ll(q, q)ll 2) 
(4.5) 

, 0 The derivative dl e /d t  is defined by the right-hand side of Eq. (3.7) with Do replaced by D in it. 
If all the eigenvalues of the matrix B ° are positive, then, as follows from expression (4.5), if we take 

into account the limits (4.2) and the choice of the constant y, for sufficiently high values of co the derivative 
dV/dt is negative-definite. In this case the sign of the function V itself is determined by the sign of the 
function V*. The latter is positive-definite in the case considered. In order to convince ourselves of this, 
we follow the proof of Theorem 1, by considering the following equations as the comparison system 

Aoq+ aD°q + B°q = 0 

If all the eigenvalues of the matrix 0 B are negative, then, by choosing the number y in accordance 
0+ 0 with the inequality ~u/°+ < 7a o, where d is the greatest eigenvalue of the matrix D and ao is the least 

eigenvalue of the matrixA0, for sufficiently large co we can make the derivative dV/dt positive-definite. 
Using the comparison system derived above, we will show that the function V in this case can take 

positive values. 
Theorem 3 is proved. 
The situation covered by Theorem 3, is similar to that considered in the corollary to Theorem 2. Unlike 

the corollary, here we have assumed that the Fourier coefficients of the periodic function depend on 
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the parameter  co. However, the coefficients which depend on co, in this case, are majorized by constant, 
which are independent of co. 

Example 4. We will illustrate Theorem 3 on the following system 

±" + Ix[d 0 + e-'~q~l(o~t)]£ + Fb0 + ~ ¢ 0 2 ( o 3 / ) 1 x  = o(ll(x, £)]1) 
k l ~ t l . I  ..I 

where Ix and do are positive constants, and, as before, Ix is a small parameter.  We will assume that 

(pi(o3t) = (pi(o3t), i = 1,2, (~pl(o3t)) = g)0>0, (q02(o3t)) = 0 

Since the following inequalities hold 

-~< -~* ~* o~ <1,  VO3e [ c o * , ~ [  ( 0 < c o * = c o n s t )  0 < e  _ e  , l+o3----------g<l+o3 

then, when b0 > 0 and co is sufficiently high, the equilibriumx = 2 = 0 is asymptotically stable. Conversely, 
it is unstable if b0 < 0. 

Example 5. In connection with the example given above, it is of interest to return to the well-known 
problem of the stabilization of the upper position of a pendulum. The equation of motion in this case 
has the form 

+ Ix£ + ( -  b + a o32 sin o~t)x = o (11 (x, £)11 ) 

where Ix, a and b are positive constants. As before, Ix is a small parameter.  
Unlike the situation considered above, here, for a sufficiently high value of o3, the equilibrium 

x = 2 = 0 is asymptotically stable, although the average of the coefficient o fx  is negative. However, it 
is impossible not to note that in this problem the conditions of Theorem 3 are not satisfied; in particular, 
inequality (4.2) for the coefficient of x is not satisfied. Hence, inequality (4.2), which occurs in the 
conditions of Theorem 3, is important, and, depending on whether it is satisfied or not, the behaviour 
of the system is changed fundamentally. 

Example 6. As one more example we will consider the system of equations related to vibrations of 
an elastic rod [2] 

Aoq + IxDoq + [ B  o + [~Bl(cot)]  q = 0 (4.6) 

Here A0, B 0 and Do are constant symmetrical positive-definite matrices, where the matrices A0 and B 0 
are diagonal, Bl(Ot) -- cp(o3t)By, where ~p(~) is a scalar periodic function, By is a constant symmetrical 
matrix, and ~ is a numerical parameter. The matricesA0, B0, Do and By do not contain the parameter co. 

We will further assume, for simplicity, that cp(o3t) = ~)(ot). Then, by Theorem 3, a threshold value 
of the frequency co = COo exists, such that when co > o30 the equilibrium position of system (4.6) is 
asymptotically stable, if all the eigenvalues of the matrix are positive and, conversely, unstable, if they 
are all negative. 

Remark 4. The proposed approach may turn out to be useful not only in the case of periodic perturbation, but 
also for any other rapidly oscillating perturbation, in particular, for systems of the form 

Ao¢ j + ctD(2Lt)q + B(~.t)q = F(~,t, q, c]) 

where ~. is a large parameter. Of course, in this case it is necessary for an average of the matrices D(Lt) and B(~) 
to exist. 

5. AN A N A L O G U E  OF T H E O R E M  1 U N D E R  C O N D I T I O N S  OF 
V A R I A B L E  LO W  D I S S I P A T I O N  

It is of practical interests to obtain an analogue of Theorem i in the situation when the low dissipation 
is variable, and the corresponding equations take the form 
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where 

S. P. Sosnitskii 

Aoil + aO(ot)( l  + B(cot)q = F(o~t, q, q) 

D(cot) = [D o+ ~Di(cot)], Dl(ot)  r = Dl(C0t) 

(5.1) 

di( t )  >- ~li, bi(t) ~ bi, 0 < di = const, 0 < b i  = const  

Moreover, we will assume that the eigenvalues of the matrix 

B*(Ot) = B(ot)  aDO ~Dl 
2 0 ( ¢ o t )  

are also positive, and, in particular, their lower bound exceeds a certain positive constant. 
Consider the equations 

OB 1 
[D(tot)- ~.a0[ = 0, ~ -  ~,B*(ot)  = 0 (5.2) 

Since the matrices A0 and B*(mt) are positive-definite, each of the equations (5.2) has n real roots 

Suppose further that the numbers ~+ and ~- correspond to the upper and lower bounds of the 
characteristic numbers of the first equation of (5.2), while the numbers g+ and g- correspond to the 
upper and lower bounds of the characteristic numbers of the second equation. 

Theorem 4. If the following inequality holds 

a~,- > ~t+o~/2 

the equilibrium position q = ~ = 0 of system (5.1) is asymptotically stable. 

Proof. Representing system (5.1) in the form 

(1 = Aolp, P = - o~D(¢ot)(l - B(mt)q + F*(o)t, q, p) 

we consider the function 

i t . _ ,  V = ~p A o p + q r B ( o t ) q  + TqP + qrD(o~t)q (5.5) 

where 7 is a positive constant, which will chosen below. We will write the derivative of the function V 
with respect to the vector field, defined by system (5.4), in the form 

dVdt - {~(IrD(O~t)q -TqrA°q t  + l q [,"2-0(olt)) q - TqTB*(COt)q + o(ll(q, q)lff) 

Proceeding as in the proof of Theorem 1, we reach the conclusion that the choice of the constant 7 
in accordance with the condition 

13g +o)/2 < T < a~- 

ensures that the derivative dV/dt is negative-definite. 

(5.3) 

(5.4) 

while the matricesA0, Do and B ( ~ )  are the same in Section 1. 
It is natural to assume further that the small parameter [3 is so small that the eigenvalues di(t ) and 

hi(t) of the matrices D ( ~ )  and B ( ~ )  respectively, are positive, and 
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In order to prove that the function V is positive-definite, we will choose the system of equations in 
the form 

Ao(~ + a d - E ( l  + b - E q  = 0 

where d-  = min(dl ,  ... ,dn),  b-  = min(/~b ... ,/)n). 
By repeating the proof  of Theorem i almost word for word, we can conclude that Theorem 4 is true. 

Corollary. The equilibrium position of system (5.1) is asymptotically stable if the lower bound of the 
eigenvalues of  one of the matrices 

I + 
a D (  o3t ) - ~l,t o3A o or 

1 ,~ ~B1 ~.-B*(mt) - ~ pm~76S ) 

is positive. 
Analogues of Corollaries 2 and 3 of Theorem 1 can be formulated and proved in the same way as 

in Section 2. The only difference is the fact that ~- and p.+ are now defined by Eqs (5.2). 
In conclusion, we note that the sufficient conditions for the auxiliary V-functions to be Lyapunov 

functions are in fact reflected in the formulations of  Theorems 1-4 [9]. In specific situations which, 
incidentally, are partly mentioned in the Remarks  to Sections 2 and 4, the possibility of  using the V- 
functions themselves may turn out to be wider than the conditions for which the theorems were derived. 
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